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Abstract— Pets are increasingly popular. Studies have shown
that human-pet interactions can offer a range of positive
physiological, physical, and social benefits. However, Owning
a pet might be infeasible for many potential pet owners due
to personal situations. In such cases, robotic pets serve as a
good potential alternative, offering a comparable pet experience
with lower time and financial demands. The foundation of a
rewarding pet experience roots in human-pet interactions, and
such fulfilling interactions rely on pets’ capability of perceiving
and recognizing the context of interactions. For instance, a dog
might offer solace by staying close with its owner when it detects
owner’s sadness, or might initiate play behaviors when it senses
owner’s engagement intention. In this work, a context-aware
human-robot-pet interaction model is developed. In particular,
multi-modal sensory data, including audio and vision, are used
to extract multi-channel context cues, such as the owner’s
posture, gesture, and audio keywords. A rule-based cognitive
model combines the context cues and estimates the appropriate
interaction context, such as engagement or following, and the
pet robot behaves accordingly. The context detection model is
evaluated in a sequence of human-robot-pet interactions and
evaluation metrics are reported.

I. INTRODUCTION

Pets are increasingly popular in people’s life. Many
companion-pet owners develop strong emotional bonds with
their pet counterparts [1]. Studies have shown that such
emotional bonds between human and pets offer human with a
range of positive physiological, physical, and social benefits
[2]. Nonetheless, owning a pet could be a time demanding
task as many animals require dedicated interaction time with
their owners, and can also lead to long-term financial burden.
Other factors such as allergies and traveling plans further
limit people from owning a desired pet. In response, robotic
pets have emerged as a potential alternative, providing a
comparable experience to living pets but with fewer demands
on the owners’ time and resources.

In the past decade, robotics and artificial intelligence has
made unprecedented breakthrough, rendering the idea of
owning robotic pet increasingly practical. It has been shown
that children are able to establish long-term bonding with a
robot pet [3]. Onofrio et al. [4] also shows that pet robots
receive a good acceptance among elder communities and
have beneficial effects on mental and physical interactions.

The foundation of a deep bond between humans and
pets is rooted in their interactions. The establishment of
these rewarding interactions relies on the pets’ capability of
perceiving and recognizing the context of interactions. For
instance, a dog might offer comfort by staying close when
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it detects sadness in its owner, or initiate playful behaviors
by wagging its tail and hopping when it senses the owner’s
desire to engage in fun activities. In another example, Cooper
et al. [5] have shown that domestic dogs are likely to avoid
a person with a book blocking the person’s eyes, because
such a status indicates the person might not want to be
disturbed. Therefore, integrating context-aware behaviors is
a fundamental aspect of designing intelligent robotic pets to
provide an authentic pet experience.

Pets’ capability of context detection is interleaved with
their umwelt. Pets perceive context through a combinations
of sensory experiences, including sound signals that contain
the owner’s vocal tones, and vision signals that capture the
owner’s gestures or actions. For instance, a dog might be able
to sense the tone in from the owner’s speech, recognizing
whether the owner is pleased or angry towards it. A cat
might welcome a gentle stroke on its head when it sees a
soft approach by the owner’s hand, yet may escape quickly
if the owner does the same action abruptly. Similarly, when
a dog sees its owner going toward the dog-food cabinet, it
probably knows that dinnertime is coming. Following these
observations, a multi-channel human-robot-pet interaction
context detection model is proposed.

Multi-modal sensory inputs, including audio and vision
sensing, are used to extract multi-channel context cues, such
as human posture, gesture, and speech. The context detection
model deploys a voting scheme to fuse the context cues,
estimating the most likely interaction context. The context
detection model is incorporated into a larger human-pet-
robot interaction system such that the pet robot behaves in
accordance with the detected context. The context detection
quality is validated based on a sequence of human-robot-
pet interactions, showing promising evaluation results. Ad-
ditional visual illustrations can be found in the supplemental.

The rest of the manuscript is organized as follows. Sec-
tion II introduces the related works in the areas of robotic
pets and context detection. Section III describes the proposed
system. Section IV discusses the evaluation and results. Sec-
tion V concludes the work with future direction highlights.

II. RELATED WORK

A. Robotic Pets

The development of robotic pet started when Sony released
the AIBO robot. The robot [7] is designed to be dog-like
and has limited basic functions of interactions. Later Petoi
developed the Nybble [8] and Bittle [9] pet robots. While
palm-sized robotic pets possess high structural variability
due to their quadruped architectures and robust locomotion
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Fig. 1: Diagram of the proposed context-aware human-pet-robot interaction system. The system takes two streams of raw inputs — RGB-
D frames from the depth camera, and audio input from the on-board microphone. The RGB-D frames are pre-processed by skeleton
tracking [6] and raw audio input undergoes speech-to-text recognition. The processed signals are used to extract context cues, which then
cast votes to determine the most likely interaction context. The robot executes a behavior that aligns with the predicted context.

controls, their perturbation bandwidth is limited due to the
lack of pre-programmed interaction strategies. Another smart
robotic pet is the MarsCat created by the elephant robotics
company. MarsCat is the first bionet robotic pet cat and
is able to recognize face, sense touch and hear sounds.
However, MarsCat has limited flexibility and low moving
speed, resulting in a limited structural variability [10]. Paro,
the robotic baby seal developed by created by Paro Takanori
Shibata is regarded as one of the most well-established
robotic pet. While Paro possess a range of sensors such as
touch, thermal and light [10], it lacks vision sensing, which
is a crucial sensory capability in most pet animals.

More recently, Taleb et al. [11] developed CoFiBot V2,
a low-price quadruped robot pet with home monitoring
capabilities such as fire detection. While CoFiBot V2 has
a simple gesture detection combined with some pet-like
behavior implementations such as sit and trot gait, the robot
pet lacks context detection based on a simulated umwelt of a
pet. Gao et al. [12] developed a quadruped pet robot OM-CO1
with visual learning and few-shot learning capability, and the
closest work to this proposal. OM-CO01 is capable of visual
and auditory interactions, and is able to detect the owner’s
facial expression. However, visual and auditory signals are
used for visual object learning, and only the owner’s facial
expression is used for generating the robot pet behaviors.

B. Context Aware Human-Robot Interactions

Context prediction is an active research area in human-
robot interactions, particularly for assistive and social robots.
Engagement detection is a popular approach of context
estimation. Zhang et al. [13] proposed a learning-based
engagement detection model for multi-person scenarios for
social robots. In [13], multiple indicative signals from the
surrounding persons, such as distance, moving speed, and

body orientation are extracted from vision inputs. A CNN-
LSTM network is used to fuse the signals and output a
probability estimation for engagement intention. Abdelrah-
man et al. [14] takes a multi-modal approach to engagement
predictions robotic arms. In [14], neural network models
are applied to extract multi-modal engagement cues from
humans, such as gaze and face location. A rule-based model
is developed to fuse the cues and predict engagement level.

Context estimation can also be formulated as a multi-class
intent detection. Wang et al. [15] proposed a multi-modal
intent that integrates audio and gesture (i.e. vision) channels.
The model is mainly designed for understanding elderly
individuals’ intent, such as grabbing and placing, for assistive
robots. The model employs speech-to-text recognition and
gesture detection to precisely capture elders’ intents. On
the other hand, et al. [16] formulate context as environ-
ment affordances, and proposed a framework for social
friendly assistive robot navigation by not interrupting people
in an indoor environment. In [16], a multi-layer system
is developed to perform event detection, scene detection,
and object detection. With such semantic information, an
environment affordance map is constructed for social friendly
path planning.

The study by Luo et al. [17] bears resemblances to the
current work. In [17], context is classified into environment
and interaction contexts. Environment context emcompasses
obstacle avoidance and object recognition, whereas interac-
tion context pertains to the responses to users’ emotions and
movements. Nonetheless, the work is exclusively developed
for VR pets.

In general, multi-channel context detection is extensively
studied in assistive robots, companionship robots, and social
robots, but limited works investigate context detection in
pet robots. Further, to the best of my knowledge, this work
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is the first attempt to study multi-channel context detection
particularly for pet robots.

III. CONTEXT-AWARE INTERACTION MODEL

Although there exists a wide range of pet animals, this
work concentrates on designing a robotic pet dog, given
pet dogs’ status as one of the most prevalent pets and the
comparatively extensive observation of their behaviors. The
structure of the proposed multi-channel context recognition
model is presented in Fig.1. The model continuously takes as
input the RGD-D images viewed by the robot’s camera, and
the audio signals captured from the robot’s mini-microphone.

A. Multi-Modal Data Pre-Prosessing

Raw RGB-D vision inputs are pre-processed by Open-
Pose [6] real-time skeleton detection with a ROS wrapper!
to extract useful body points. The body-point information is
heavily used in this work, as existing studies [18], [19] have
suggested that dogs are able to recognize protruding human
body parts and use that information for communication.
Thus, using such body-point information could potentially
mirror dogs’ umwelt.

Raw audio inputs are pre-processed by real-time speech-
to-text recognition?. Since dogs cannot reason about human
language, the semantic meanings of the transcribed text will
not be used. However, studies [20], [21] have suggested
that dogs can be sensitive to certain keywords conditioned
through daily lives. Thus the transcribed text will be used to
search for sensitive keywords.

B. Multi-Channel Context Cues Acquisition

1) Visiual Context Cues: The skeleton tracking infor-
mation from the camera frames is used to detect visual
context cues, as shown in the upper four orange boxes in
Fig. 1. Specifically, with the extracted body points, context
cues from four channels — gesture, posture, motion, and
orientation — are estimated using rule-based approaches.

o Gesture: dogs’ ability to comprehend human gestures
has long been recognized as aiding their understanding
of human intentions [22], [23]. Therefore, the use of
gesture context cues is a critical component in the
proposed model. Gestures are detected using wrist,

ttps://github.com/ravijo/ros_openpose
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neck, and eye locations. Possible gestures considered
in this work include wave, hug, and none. Specifically,
wave is detected by measuring the distance of a wrist
above both eyes and hug is determined by measuring
the horizontal distance between the two wrists. If no
gesture is detected, the gesture context cue is none.
Fig. 2 provides a working illustration of gesture context
cue detection.

« Posture: posture is detected using hip, knee, and ankle
positions. Possible postures considered in this work
include sit, stand, as shown in Fig. 3. In particular, using
the hip, knee, and ankle locations, the angles formed by
the thighs and thins from both legs are computed. If the
angles are lower than a threshold, the person is likely
to be sitting or crouching down, and so the posture is
sit. Otherwise, the posture is stand.



Posture |
Name mentioned
Engagement tone
Coexistence tone
Angry tone
Following tone

Engagement

{’Orange”}

{”play”, “come”, “dance”}
{”Stay”’ ”Sit”, !’Shush”’ ”Stop”}
{"angry”, "out”, "away”}
“come”, “follow”}

TABLE I: Keyword lists for audio context cues. The robot pet’s
name is Orange.

e Motion: relative motion of the target human (i.e. the
pet owner) is detected using the depth information of
the human head point within a sliding window. In
this work, motion status includes approaching, leaving,
none. If the currently computed distance differs from
the previous distance more than a threshold, the motion
status becomes approaching or leaving depending on
whether the new distance is closer or further away. If the
new distance is only slightly different from the previous
distance, the motion status is none. To account for
sensor noise, both the current and previous distances are
computed by taking the averages from sliding windows

« Orientation: studies have shown that dogs are excellent
at recognizing humans’ attantion [24], [5]. Further,
Wynee [18] and other related studies have suggested
that dogs are capable of recognizing whether a human is
facing or seeing the dog. Thus, detecting the orientation
is important in reproducing the dogs’ capability in
attention cognition. Correspondingly, this work detects
orientation status as facing and away, as shown in Fig. 4.
Specifically, the confidence scores of the detected left
and right ears are compared. If the confidence scores are
comparable, the person is likely to be facing the robot
pet. On the other hand, a large difference between the
scores suggests the person is facing away from the robot
pet.

2) Audio Context Cues: With the transcribed text from
audio data, audio context cues from five audio channels —
name mentioned, engagement tone, coexistence tone, angry
tone and following tone, are estimated. Each of the audio
channels is a binary channel, where true indicates the corre-
sponding audio context cue is found in the person’s speech.
For instance, engagement tone being true indicates that the
human’s speech contains an engagement tone, while angry
tone being false means the human’s speech does not contain
an angry tone. Similarly, name mentioned would be true if
the pet’s name is mentioned in the human speech.

To determine the output for each audio channel, each
channel contains a set of keywords (See Table I). The
transcribed text is first converted to lowercase letters, and
is compared with each list. If one of the keywords from a
list is found from the transcribed text, the audio channel of
that list outputs true. Otherwise the channel outputs false.

C. Context Detection

The core of this work lies in the proposed multi-channel
context detection model (Fig. 1), which fuses the multi-
channel context cues and estimates the context.

Gesture | Engagement | Coexistence | Angry | Following
Hug 3 0 0 0
Wave 0 0 0 2
None 0 1 0 0

TABLE II: Voting rules for gesture channel context cues

Posture | Engagement | Coexistence | Angry | Following
Stand 1 0 0 2
Sit 0 2 0 0

TABLE III: Voting rules for posture channel context cues

The set of context in this work is defined as
S = {"engagement’,’coexistence’, "angry’, "following’ }. “En-
gagement” denotes a scenario where the owner is inclined to
participate in enjoyable activities with the pet. “Coexistence”
reflects a situation where the owner is preoccupied with per-
sonal tasks, such as reading or watching television. “Angry”
suggests a condition where the owner is possibly upset with
the pet, possibly due to the pet damaging something valu-
able. “Following” indicates that the pet should accompany
the owner, for example, during walks. Downstream motor
commands are tailored to align with the predicted context.

The context detection model deterministically outputs the
most likely context. Specifically, an efficient voting-based
architecture is used, where the context cue from each channel
casts one or several votes to the related context, and the
context with the maximum votes is determined. For instance,
gesture channel would cast three votes for ‘Engagement’ if
the gesture is hug, and posture channel would cast two votes
for ‘Coexistence’ if the posture is sit. Details about the voting
schemes for each context cue channel are presented in tables
I, I, IV, Vand VI. Note that these voting schemes are
adjustable at deployment time to fit specific scenarios.

Further, note that in the real world, multiple interaction
contexts could potentially exist at the same time (e.g.,
"coexistence’ and ‘angry’), and we leave such scenarios to
future work.

D. Motor Controls

A set of action primitives are first implemented using the
control codes provided by the robot platform (see Sec. III-
E), including forward(m), backward(m), turnLeft(6), and
turnRight(0), where m is the distance unit in meter and 6 is
the angle unit in degree. A motor control scheme is designed
for each of the possible contexts. When a context is detected,
the corresponding motor control scheme is deployed.

Motion | Engagement | Coexistence | Angry | Following
Leaving 0 1 0 1
Approach 1 0 0 0

TABLE IV: Voting rules for motion channel context cues
Orientation | Engagement | Coexistence | Angry | Following
Facing 0 1 0 0
Away 0 3 0 0

TABLE V: Voting rules for orientation channel context cues



Fig. 5: Diagram showing the Coexistence Control Scheme. In a coexistence context, the pet robot watches its owner saliently without any
interaction motions. When the owner is getting out of the pet robot’s field of view, the pet robot reorients itself by performing a turn to

ensure it can always see its owner.

Audio Cues | Engagement | Coexistence | Angry | Following
Name

Engage tone
Coexist tone
Angry. tone
Follow tone
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TABLE VI: Voting rules for all audio context cues

1) Engagement Control Scheme: In an engagement
context, the pet robot tries to engage in fun activities
with the owner. It does this by performing a series

of actions that represent a dancing behavior. Such
a series of actions includes moving forward and
backward by a small amount twice, followed by

turning left and right by a small amount. Specifically,
{forward(0.2), backward(0.2), forward(0.2), backward(0.2),
turnLeft(4), turnRight(4)}. Such a sequence of controls is
repeatedly executed until a new context is predicted.

2) Coexistence Control Scheme: A coexistence context
implies that the owner does not want to be interrupted, so
the pet robot simply silently watches the owner without any
other activities. Specifically, the pet robot re-orients itself
such that the owner is always within the pet robot’s field of
view by performing either turnLeft or turnRight. When the
owner is approaching the left boundary of the robot’s camera
field of view, the pet robot first computes the angle between
the camera center line and the owner’s position and performs
a turnLeft by that amount such that the owner is again in the
center of the camera frame. The Coexistence control scheme
and the reorientation are shown in Fig. 5.

3) Angry: In an angry context, the owner is angry toward
the pet robot, so the pet robot will try to escape. This
is done by first performing a 180-degree turn and then a
forward move by 2 meters. Note that due to the limited time
frame, this work does not include obstacle avoidance, so it
is assumed that the environment has at least 2 meters of free
space for the pet robot to turn and escape.

4) Following Control Scheme: The following context im-
plies that the pet robot should follow the owner. The pet robot
follows its owner by repeatedly reorienting (i.e. turnLeft or
turnRight) itself such that the owner is at the camera frame
center (similar to Coexistence Control Scheme) and moving
forward or backward to maintain a short linear distance
between the robot and the owner. As the owner moves away,
the pet robot will move forward to follow the owner; as the
owner moves too close toward the pet robot, the pet robot

will move backward to maintain a short distance.

E. Hardware Setup

Fig. 6 shows the hardware setup of the robot pet. Sun-
Founder PiCar-4wd? is used as the mobile robot platform
for simulating the artificial pet. The mobile robot is capable
of performing basic movements such as moving forward,
backward, and turning. The onboard computer is a Raspberry
Pi Model 4B with 8 GB of RAM. Intel RealSense D435i
is mounted on the robot pet to provide RGB-D frames for
vision sensing. The robot pet is also equipped with a mini-
microphone for audio signals. An ultrasonic range sensor is
attached to a servo at the front of the robot pet, currently
serving a purely decorative function, though it has potential
for obstacle avoidance and range detection applications. The
skeleton tracking, audio keyword extraction, and context
detection are running on an off-board computer with an Intel
Core I7. The robot and the computer communicate wirelessly
through Robot Operating System (ROS) Noetic.

At runtime, the context cue acquisition (Sec III-B.1) runs
at 10 Hz, context detection (Sec III-C) is performed at 5 Hz,
and context-based controls (Sec III-D) are updated at 10 Hz.
This study prioritizes the behavior and sensory emulation
of a pet animal, leaving the development of the robot pet’s
physical design beyond the scope of this work.

IV. PILOT STUDY EVALUATION
A. Evaluation Setup

The core of this work lies in the proposed multi-channel
context detection model, so the pilot study is centered around
context detection quality at deployment time.

The pilot study is conducted at the University of Waterloo
RoboHub. In the current version of this work, the speech-
to-text implementation for audio context cue cannot target
a specific person’s voice, hence it has to be assumed that
the experimenter is only person speaking in the environment.
Unfortunately, at the time of the pilot study, there are merely
opportunities where the experimenter is the only person
at the RoboHub, rendering evaluating the audio channel
infeasible. As a further consequence, the ‘angry’ context is
never detected as in the current formulation, ‘angry‘ context
is only detected from speech. As a result, the pilot study fo-
cuses on the remaining three context, namely ‘Engagement’,

3https://docs.sunfounder.com/projects/picar-4wd/
en/latest/



Fig. 6: Robot pet platform with sensors

‘Coexistence’, and ‘Following’, and uses the four channels
of context cues from the vision data, namely gesture, posture,
motion, and orientation.

Nonetheless, a working illustration of the audio channel
context cues is included in the supplemental video. The
illustration is performed in a quiet room but in a standalone
fashion (i.e. with audio data only). The reason is that the
onboard Intel RealSense D435i camera is owned by the
RoboHub, and could not be removed from the RoboHub
premises.

B. Evaluation Procedure

A total of seven sequences of context is randomly gener-
ated, serving as the ground truth. Each sequence consists of
five context that are randomly generated under the constraint
that adjacent context are non-repeating. In each trial, the
experimenter interacts with the pet robot by following a
sequence of context among the seven sequences, giving a
total of seven trials. Each trial of the experiment is video
recorded, and the exact timesteps of context changes are
marked offline by the experimenter to serve as ground truth.
The predicted context per frame is recorded to be compared
with the ground truth.

The central premise of this work is that by modeling the
the multi-channel sensory and cognitive experiences of a
pet animal, a robotic pet’s capability to understand context
can be improved. To evaluate the effectiveness of using
multi-channel context cues, the proposed model is compared
against two baseline models. The first baseline, denoted No-
Posture (NP), does not leverage the posture channel, and only
relies on the gesture, motion, and orientation channels. The
second baseline, denoted No-Gesture (NG), does not leverage
the gesture channel, and only relies on the posture, motion,
and orientation channels. In the evaluation, the proposed
model is denoted as Full-Vision (FV).

For each of the three models, the experimenter performs
seven trials of experiment using the same seven sequences
of context. To analyze the results, for each context under

each model, accuracy, precision, recall, and F1 scores are
reported.

C. Evaluation Results and Discussion

The overall prediction accuracy is presented in table VII.
Tables VIII, IX, and X display the per-context prediction
quality of the three evaluated models.

The Full-Vision model provides the highest overall ac-
curacy, while the No-Gesture model performs the worst.
This is expected because the Full-Vision model leverages
all channels of context cues. Context detection heavily relies
on gesture cues, which could potentially explain the worst
performance from the No-Gesture model.

Comparing the per-context performances, the Full-Vision
model also gives the highest prediction quality and the No-
Gesture model performs the worst. The No-Posture model
performs better the the No-Gesture model. However, the
No-Posture model is still outperformed by the Full-Vision
model across all metrics in all context (except Engagement
precision) by a smaller margin. This indicates that integrating
human posture and gesture detection is effective in improving
context detection. The performance margin between Full-
Vision and No-Posture being smaller than the performance
margin between Full-Vision and No-Gesture potentially in-
dicates that while both gesture and posture are indicative
context cues, gesture is a comparatively more reliable feature
for context detection. Such observation also aligns with
the conclusion from prior studies [22], [23] that dogs are
excellent at comprehending human gestures.

Further, note that for both Full-Vision and No-Gesture
models, the ‘Coexistence’ context receives the lowest accu-
racy. Also, the ‘Coexistence’ context has a low precision and
a high recall in both modals. This observation indicates that
both models overestimate ‘Coexistence’ likelihood during
the experiment. In addition, observing that for both models,
‘Following’ context receives the lowest recall, indicating that
both models underestimates ‘Following’ likelihood. The two
observations potentially suggest that the both Full-Vision
and No-Posture models sometimes confuses ‘Following’ with
‘Coexistence’. The author hypothesize that this aspect could
be potentially improved with additional audio context cues,
which are not tested in this pilot study.

Overall, the comparisons indicate that the Full-Vision
context detection model offers the best performance. Such
result suggests that leveraging context cues from a wider
range of channels, or in other words, increasing the per-
turbation bandwidth in which the the pet robot interact
with the environment, could benefit the pet robot’s context
understanding capability.

| Full-Vision | No-Posture | No-Gesture
Accuracy | 0.83 | 0.77 | 0.60

TABLE VII: Overall Accuracy for each model

V. CONCLUSION AND FUTURE WORK

In this work, a novel multi-channel context-aware human
pet robot interaction model is presented. By leveraging



Context Accuracy | Precision | Recall | F1 Score
Engagement 0.95 0.93 0.81 0.86
Coexistence 0.84 0.68 0.93 0.79
Following 0.88 0.96 0.77 0.86

TABLE VIII: Full-Vision Model context-wise performance

Context Accuracy | Precision | Recall | F1 Score
Engagement 0.94 0.94 0.77 0.85
Coexistence 0.80 0.66 0.92 0.77
Following 0.83 0.95 0.66 0.78

TABLE IX: No-Posture (NP) Model context-wise performance

multi-modal sensor data, rule-based methods are develop
to extract multi-channel context cues, ranging from human
posture, gesture, and audio tone. A context detection model
is developed to fuse the multi-channel context cues and
estimate the most likely interaction context. Downstream
motor controls are implemented to align with each predicted
context. A pilot study evaluation is performed to evaluate the
proposed context detection model, and the result suggests
that leveraging a wider range of context cues could be
beneficial for pet robot designs.

The current work leaves rooms for improvement on several
aspects in future work. First, the current speech detection
system is unable to target a specific person’s voice, rendering
the formal evaluation of audio context cues infeasible during
the project time frame. It would be beneficial to examine how
much improvement would incorporating the audio context
bring to the context detection quality. Further, inability to
target a specific person’s voice does not align with real pet
dogs’ audio cognition ability, as dogs are able to recognize
their owner’s voice. Hence, it would be nice to incorporate
speaker recognition in addition to speech recognition.

Second, the current work does not incorporate obstacle
detection and avoidance, which is a native and crucial
capability for dogs. Extending the current work with obstacle
avoidance could not only make the pet robot behaves more
similarily to a real dog, but can also ensure the robot’s safety.

Third, the current work detects interaction context solely
based on the information from the person (i.e. the owner),
namely the body points and speech. However, semantic
information from the environment also provides rich cues
for context prediction. For instance, a person holding a book
is less likely to start an interaction than a person holding a
Frisbee. From such aspects, scene understanding and object
recognition might offer additional improvements.

In conclusion, the current work shows that multi-channel
sensory and cognitive modeling could be beneficial for
robotic pet context understanding, but further improvements
can be made in both cognitive modeling and system control
aspects.
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